The islands of the Svalbard archipelago offer some of the most exciting opportunities for geological studies. WHY?

Knowledge gained through the Longyearbyen CO₂ pilot project can contribute to complex storage/reservoir units projects worldwide.

The realization of CO₂ storage on Svalbard:

Wells and pumps - a key to knowledge

- 8 drilled wells up to 1000 m deep, analyzing core samples and outcrop data
- Pressure tests and fracturing to gain knowledge of the reservoir
- Conducted extensive seismic research into the region
- Modelled the reservoir
- Conducted sea bed geology for pockmarks and their activity and cored the permafrost for a better understanding of how this will perform as a top seal.

Fractures guide fluid flow

- Potential fluid migration pathways
- Low matrix permeability (<2mD)
- Moderate porosity (5-20%)

Fluid migration pathways to sea floor seepage

- High-resolution multibeam bathymetric data from SA1 (Adventfjorden); showing the distribution of pockmarks.
- High artic drilling to 1000 m and its challenges
- State of the art drilling
- Contributing to research
- Stale of the art drilling: High artic drilling to 1000 m and its challenges
- Conducted sea bed geology for pockmarks and their activity and cored the permafrost for a better understanding of how this will perform as a top seal.

Geophysics reflects the subsurface

- Seismic: Norsar on behalf of the CO₂ Lab continues to run an extensive seismic program.
- Contributions from geophysical methods; red circles - microseismic network at the CO₂ Lab site
- Yellow triangles - broadband seismic stations
- Map view of Adventdalen and seismic networks.

Fluids are mobile even in a frozen ground

- Coring the permafrost
- Since the project started in 2007, the permafrost has been considered as an additional security, acting as a top seal to the reservoir.
- With this considered, the lab has funded research to this effect.
- Under the guidance of Hanne Christian and her team from UNIS, in 2014 DH8 was drilled and cored. The aim was to find out more about permafrost characteristics.

Rocks below Longyearbyen surface 20KM away

From Source to solution in a small loop

- Started over a cup of coffee and has now realised:
- 8 drilled wells up to 1000 m deep, analysing core samples and outcrop data
- Pressure tests and fracturing to gain knowledge of the reservoir
- Conducted extensive seismic research into the region
- Modelled the reservoir
- Conducted sea bed geology for pockmarks and their activity and cored the permafrost for a better understanding of how this will perform as a top seal.

Svalbard has become a well-known location for studying processes related to climate change.

Many Thanks to our loyal partners:

Conoco Phillips, Store Norske, Statoil, Lundin, LNS, Baker Hughes, Research Council of Norway - Demo CLimit SSF, Svalbard/Njåfjord, UNIS, University of Göttingen, University of Oslo, SUCCESS, UNICIPR, University of Bergen, Sintef, Statkraft, NGU, NGI, and NTNU

For more information on the Longyearbyen CO₂ Lab - http://co2-ccs.unis.no/